Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(16): 23060-23074, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752308

RESUMO

For high accuracy X-ray mirror measurement, the analysis and corrections of minute systematic errors of the measuring instrument are required. As an X-ray mirror metrology tool, the nano-accuracy surface profiler (NSP) consists of two autocollimators (AC) serving its reference and sample beams, in which the sample-beam AC maintains a fixed distance from the mirror. In this work, the multi-pitch self-calibration method is applied to an NSP instrument to reconstruct both the mirror slope and the instrument error of the sample-beam AC through a series of x scans and pitch angle scans. It is more technically sound to apply this multi-pitch self-calibration method to a working-distance-fixed slope scanner, such as the NSP. First of all, we introduce the principle of the multi-pitch self-calibration method, discuss its ambiguities, and provide our regularization illustrated with simulations. Second, some real measurements of a spherical mirror with 10-mrad total slope are demonstrated to verify the effectiveness of the multi-pitch self-calibration technique with an NSP. Furthermore, the experimental reconstruction of the low- and high-frequency signals of the instrument error with different settings in x and pitch steps are addressed and studied in terms of repeatability, reproducibility, self-consistency, and effectiveness in compensation for single-pitch scans.

2.
Opt Express ; 27(19): 26940-26956, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674564

RESUMO

Stitching interferometry is performed by collecting interferometric data from overlapped sub-apertures and stitching these data together to provide a full surface map. The propagation of the systematic error in the measured subset data is one of the main error sources in stitching interferometry for accurate reconstruction of the surface topography. In this work, we propose, using the redundancy of the captured subset data, two types of two-dimensional (2D) self-calibration stitching algorithms to overcome this issue by in situ estimating the repeatable high-order additive systematic errors, especially for the application of measuring X-ray mirrors. The first algorithm, called CS short for "Calibrate, and then Stitch", calibrates the high-order terms of the reference by minimizing the de-tilted discrepancies of the overlapped subsets and then stitches the reference-subtracted subsets. The second algorithm, called SC short for "Stitch, and then Calibrate", stitches a temporarily result and then calibrates the reference from the de-tilted discrepancies of the measured subsets and the temporarily stitched result. In the implementation of 2D scans in x- and y-directions, step randomization is introduced to generate nonuniformly spaced subsets which can diminish the periodic stitching errors commonly observed in evenly spaced subsets. The regularization on low-order terms enables a highly flexible option to add the curvature and twist acquired by another system. Both numerical simulations and experiments are carried out to verify the proposed method. All the results indicate that 2D high-order repeatable additive systematic errors can be retrieved from the 2D redundant overlapped data in stitching interferometry.

3.
Struct Dyn ; 6(5): 054307, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31700943

RESUMO

Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies, and small angle X-ray scattering (SAXS). The tr-SRCD setup takes advantage of the natural polarization of the synchrotron radiation emitted by a bending magnet to record broadband UV CD faster than any current SRCD setup, improving the acquisition speed from 10 mHz to 130 Hz and the accessible temporal resolution by several orders of magnitude. We illustrate the new approach by following the isomer concentration changes of an azopeptide after a photoisomerization. This breakthrough in SRCD spectroscopy opens up a wide range of potential applications to the detailed characterization of biological processes, such as protein folding and protein-ligand binding.

4.
J Synchrotron Radiat ; 25(Pt 2): 385-398, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488917

RESUMO

The investigation of ultrafast dynamics, taking place on the few to sub-picosecond time scale, is today a very active research area pursued in a variety of scientific domains. With the recent advent of X-ray free-electron lasers (XFELs), providing very intense X-ray pulses of duration as short as a few femtoseconds, this research field has gained further momentum. As a consequence, the demand for access strongly exceeds the capacity of the very few XFEL facilities existing worldwide. This situation motivates the development of alternative sub-picosecond pulsed X-ray sources among which femtoslicing facilities at synchrotron radiation storage rings are standing out due to their tunability over an extended photon energy range and their high stability. Following the success of the femtoslicing installations at ALS, BESSY-II, SLS and UVSOR, SOLEIL decided to implement a femtoslicing facility. Several challenges were faced, including operation at the highest electron beam energy ever, and achievement of slice separation exclusively with the natural dispersion function of the storage ring. SOLEIL's setup also enables, for the first time, delivering sub-picosecond pulses simultaneously to several beamlines. This last feature enlarges the experimental capabilities of the facility, which covers the soft and hard X-ray photon energy range. In this paper, the commissioning of this original femtoslicing facility is reported. Furthermore, it is shown that the slicing-induced THz signal can be used to derive a quantitative estimate for the degree of energy exchange between the femtosecond infrared laser pulse and the circulating electron bunch.

5.
J Synchrotron Radiat ; 22(4): 1118-29, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134820

RESUMO

The Nanoscopium 155 m-long beamline of Synchrotron Soleil is dedicated to scanning hard X-ray nanoprobe techniques. Nanoscopium aims to reach ≤100 nm resolution in the 5-20 keV energy range for routine user experiments. The beamline design tackles the tight stability requirements of such a scanning nanoprobe by creating an overfilled secondary source, implementing all horizontally reflecting main beamline optics, applying high mechanical stability equipment and constructing a dedicated high-stability building envelope. Multi-technique scanning imaging and tomography including X-ray fluorescence spectrometry and spectro-microscopy, absorption, differential phase and dark-field contrasts are implemented at the beamline in order to provide simultaneous information on the elemental distribution, speciation and sample morphology. This paper describes the optical concept and the first measured performance of the Nanoscopium beamline followed by the hierarchical length-scale multi-technique imaging experiments performed with dwell times down to 3 ms per pixel.

6.
Rev Sci Instrum ; 85(4): 043108, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24784594

RESUMO

A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 - 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 µsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 µm(2) focal spot source with full polarization control.

7.
Opt Lett ; 39(7): 2141-4, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686695

RESUMO

An alternate multilayer (AML) grating has been prepared by coating an ion etched lamellar grating with a B4C/Mo2C multilayer (ML) having a layer thickness close to the groove depth. Such a structure behaves as a 2D synthetic crystal and can reach very high efficiencies when the Bragg condition is satisfied. This AML coated grating has been characterized at the SOLEIL Metrology and Tests Beamline between 0.7 and 1.7 keV and at the four-crystal monochromator beamline of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II between 1.75 and 3.4 keV. A peak diffraction efficiency of nearly 27% was measured at 2.2 keV. The measured efficiencies are well reproduced by numerical simulations made with the electromagnetic propagation code CARPEM. Such AML gratings, paired with a matched ML mirror, constitute efficient monochromators for intermediate energy photons. They will extend the accessible energy for many applications as x-ray absorption spectroscopy or x-ray magnetic circular dichroism experiments.

8.
J Synchrotron Radiat ; 19(Pt 5): 831-5, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22898965

RESUMO

The new synchrotron-radiation circular-dichroism (SRCD) endstation on the UV-visible synchrotron beamline DISCO has been commissioned at the SOLEIL synchrotron. The design has been focused on preservation of a high degree of linear polarization at high flux and moderate resolving power covering the vacuum ultraviolet to visible spectral range (125-600 nm). The beam dimensions have been set to 4 mm × 4 mm at 1 nm bandwidth for lower sample degradation. The nitrogen-purged sample chamber fits three types of sample holders accommodating conventional round cell mounting, automated rotation of the samples, as well as a microfluidic set-up. Automated temperature-controlled data collection on microvolumes is now available to the biology and chemistry communities. Macromolecules including membrane proteins, soluble proteins, bio-nanotubes, sugars, DNA and RNAs are now routinely investigated.


Assuntos
Dicroísmo Circular/métodos , Substâncias Macromoleculares/química , Mioglobina/química , Síncrotrons
9.
J Synchrotron Radiat ; 19(Pt 4): 508-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22713882

RESUMO

DESIRS is a new undulator-based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas-phase studies of molecular and electronic structures, reactivity and polarization-dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier-transform spectrometer (FTS) for ultra-high-resolution absorption spectroscopy (resolving power up to 10(6)) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5-40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m-long pure electromagnetic variable-polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi-perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic-free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre-focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off-plane normal-incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm(-1), allowing the flux-to-resolution trade-off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 10(10)-10(11) photons s(-1) range in a 1/50000 bandwidth, and 10(12)-10(13) photons s(-1) in a 1/1000 bandwidth, which is very satisfactory although slightly below optical simulations. All of these features make DESIRS a state-of-the-art VUV beamline for spectroscopy and dichroism open to a broad scientific community.

10.
J Synchrotron Radiat ; 16(Pt 6): 835-41, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19844021

RESUMO

DISCO, a novel low-energy beamline covering the spectrum range from the VUV to the visible, has received its first photons at the French synchrotron SOLEIL. In this article the DISCO design and concept of three experimental stations serving research communities in biology and chemistry are described. Emphasis has been put on high flux generation and preservation of polarization at variable energy resolutions. The three experiments include a completely new approach for microscopy and atmospheric pressure experiments as well as a ;classical' synchrotron radiation circular dichroism station. Preliminary tests of the optical design and technical concept have been made. Theoretical predictions of the beam have been compared with the first images produced by the first photons originating from the large-aperture bending-magnet source. Results are also reported concerning the cold finger used to absorb hard X-ray radiation in the central part of the synchrotron beam and to avoid heavy thermal load on the following optics. Wavelength selection using monochromators with different gratings for each experimental set-up as well as beam propagation and conditioning throughout the optical system are detailed. First photons comply very well with the theoretical calculations.

11.
J Synchrotron Radiat ; 15(Pt 2): 134-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18296778

RESUMO

The recent development of short-wavelength optics (X/EUV, synchrotrons) requires improved metrology techniques in terms of accuracy and curvature dynamic range. In this article a stitching Shack-Hartmann head dedicated to be mounted on translation stages for the characterization of X-ray mirrors is presented. The principle of the instrument is described and experimental results for an X-ray toroidal mirror are presented. Submicroradian performances can be achieved and systematic comparison with a classical long-trace profiler is presented. The accuracy and wide dynamic range of the Shack-Hartmann long-trace-profiler head allow two-dimensional characterizations of surface figure and curvature with a submillimeter spatial resolution.

12.
Rev Sci Instrum ; 78(4): 043702, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17477665

RESUMO

We have developed a setup for measuring holographically formed interference patterns using an integrated sample-mask design. The direct space image of the sample is obtained via a two-dimensional Fourier transform of the X-ray diffraction pattern. We present the details of our setup, commenting on the influence of geometrical parameters on the imaging capabilities. As an example, we present and discuss the results of test experiments on a patterned Co film.


Assuntos
Análise de Fourier , Difração de Raios X , Diagnóstico por Imagem
13.
Opt Express ; 10(20): 1111-7, 2002 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19451969

RESUMO

It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...